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Continuous Freezing in Three Dimensions
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We analyze the freezing transition in a system of hard particles with a very long-ranged repulsion.
The long-range repulsion makes first-order freezing transitions continuous, but leaves the initial stages
of the crystallization unchanged: the crystal phase must still nucleate. The coexistence between bulk
phases is replaced by microphase separation.
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perturbation theory, we find that if a repulsion with a
range � times the hard-sphere diameter is added to the

our unit of length, and the thermal energy kBT as our unit
of energy.
Hard spheres undergo a strongly first-order freezing
transition once the volume fraction of the spheres exceeds
49.4%. At that density, the hard-sphere fluid coexists with
a face-centered cubic solid with volume fraction of
54.5%. This transition is shifted, but not changed quali-
tatively by the presence of weak, attractive, interactions.
The effect of weak, long-ranged attractive forces on the
hard-spheres freezing transition was first discussed by
Longuet-Higgins and Widom [1]. In the spirit of the
van der Waals theory of the liquid-vapor transition,
Longuet-Higgins and Widom used perturbation theory
to compute the effect of attractive forces on the freezing
transition. This approach was placed on a rigorous footing
by the work of Kac et al. [2], van Kampen [3], and
Lebowitz and Penrose [4]. This work showed that the
form of the free energy pioneered in the 19th century
by van der Waals, becomes exact for weak, long-ranged
attractions, in the limit that the strength goes to zero and
the range goes to infinity in such a way that the integrated
strength of the potential remains finite.

In this Letter, we discuss the effect of weak, long-
ranged repulsive forces on the freezing transition of
hard spheres. At first sight, one might expect that the
van der Waals approach should work just as well for
weak repulsive as for weak attractive forces, but this is
not the case. In fact, Lebowitz and Penrose [4] showed
that there is a rather surprising asymmetry between the
case of weak attractions and that of weak repulsions. In
particular, they concluded that, if the same limiting
procedure is applied to repulsive interactions, any preex-
isting phase transition will be suppressed. To quote
Ref. [4]: ‘‘[such a repulsive potential] causes the distinct
liquid and gas phases of a normal first-order transition to
break up into droplets or froth. . ..’’ Note that the discus-
sion of Lebowitz and Penrose focuses on the liquid-vapor
transition, i.e., a transition between two phases with the
same symmetry.

To our knowledge, little attention has been paid to the
possible implications of the Lebowitz-Penrose scenario
for freezing. By applying the exact Lebowitz-Penrose
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hard-sphere repulsion, the transition from fluid to crystal
becomes continuous in the � ! 1 limit. It is continuous
in the sense that although there is a discontinuity in the
density derivative of the pressure, there is no plateau in
the pressure itself and so no coexistence of phases with
differing densities. By going beyond the theory of Lebo-
witz and Penrose and considering inhomogeneous sys-
tems and finite ranges � of the repulsion, we show that
switching on a long-range repulsion breaks up coexisting
fluid and crystalline phases into domains of size many
times the hard-sphere diameter but much smaller than �.
Switching on the long-range repulsion has the effect of
driving the solid-fluid interfacial free energy to zero. In
this respect, long-range repulsions act like a surfactant.
Even if the repulsion is too weak (or too short ranged) to
break up coexisting phases into domains, it may sig-
nificantly increase rates of nucleation, and so alter the
phase-transition dynamics. However, the effect on the
phase-transition dynamics is limited to not-too-large �.
In the � ! 1 limit nucleation is identical to that in hard
spheres, resulting in the surprising situation where
although the transitions are continuous, before they can
occur a nucleation barrier must be surmounted.

We start by defining a suitable repulsive pair potential,

u �

�
1; r � �;
w�r�; r > �;

(1)

where w�r� is a Kac potential

w�r� � ���3 exp��r=����	: (2)

The choice of this form for w�r� is made for the sake of
convenience. For � > 0, the long-range pair interaction is
repulsive, and for � < 0 it is attractive. The exact results of
Lebowitz and Penrose apply in the � ! 1 limit. The
contribution of w�r� to the second virial coefficient is
just half its integral over all space, divided by the thermal
energy kBT [5]. We denote this contribution to the second
virial coefficient by a � 4��=kBT. In what follows, we
use reduced units: we use the hard-sphere diameter � as
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Lebowitz and Penrose [4] were able to show that, in the
limit � ! 1, the free energy per unit, the form of Eq. (1)
is given exactly by

f � M:C:F:�f�0���� 
 a�2�; (3)

where M:C:F:� � denotes the maximal convex function
not exceeding the function in parentheses, and f�0����
is the exact free energy per unit volume of hard spheres
in a system with a number density � (in particular,
within the coexistence region it is a weighted mean of
the free energies of the coexisting phases). Thus f is
given by the expression in parentheses except when the
expression in parentheses is not convex, when it is given
by the free energy along a straight line between two
points of the curve such that with the straight line the
function is rendered convex. When a straight line is re-
quired we are within the coexistence region of a first-
order phase transition.

In Fig. 1, we show the (almost [6]) exact phase diagram
of hard spheres plus an infinitely long-range interaction.
The a < 0 half corresponds to the conventional van der
Waals case. The negative a�2 term in the free-energy
density tends to make the function in parentheses non-
convex. This broadens the coexistence region of the ex-
isting fluid-crystal transition and, for a <�5:55, creates
a first-order transition between two fluid phases: a vapor-
liquid transition. The fluid-crystal and vapor-liquid tran-
sitions meet at the triple point. The phase diagram of a
simple atomic system, such as argon, has the same fea-
tures as the a < 0 part of Fig. 1.

Along the a � 0 line we have the phase behavior of
hard spheres and for a > 0 we have that of hard spheres
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FIG. 1. The ‘‘exact’’ phase diagram for hard spheres with an
infinitely long-ranged attraction or repulsion; in the �-a plane,
where � is the volume fraction occupied by the hard cores. The
solid curves separate the 1 and 2 phase regions; the 2 phase
region is marked by a 2 and the 1 phase fluid and crystal regions
are marked by an F and an X, respectively. Microphase sepa-
ration occurs between the vertical dashed lines, and is denoted
by an M. The horizontal dotted line joins the three coexisting
densities at the triple point.
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with a long-range repulsion [8]. For a > 0 there is no
fluid-crystal coexistence region as there is no plateau
in the pressure versus density plot. Yet, the system
does freeze: for densities below the continuation of the
freezing density of the van der Waals fluid (the leftmost
dashed curve), the system is a bulk fluid, while for den-
sities above the continuation of the melting curve of the
solid (the dashed curve on the right), the system is a bulk
crystal.

We can see that the free energy of Eq. (3) implies this.
f�0� is convex and, hence, adding a term that is quadratic
in density with a positive coefficient, a > 0, will not
make it nonconvex. Thus, for a > 0, f is just given by
the term in parentheses in Eq. (3).

In the hard-sphere fluid-crystal coexistence region, f�0�

is a linear function of density. As f has the additional a�2

term it contains no straight segments, and hence there is
no first-order transition. This is also obvious if one con-
siders that the pressure p � p�0� 
 a�2, where p�0� is the
pressure of hard spheres. In the hard-sphere coexistence
region, dp�0�=d� � 0, but dp=d� � 2a� > 0. In Fig. 1
we have drawn dashed curves to indicate the densities
where dp=d� is discontinuous.

Thus far, we have simply applied the Lebowitz-Penrose
argument to the freezing transition of repulsive spheres.
Next, we look in more detail at the nature of this unusual
freezing transition. In particular, we consider what is
happening in the potentially more relevant case that the
range of the repulsion, �, is large but finite. The key point
to note about the potential of Eq. (1) is that it is char-
acterized by two widely differing length scales: the
hard-sphere interaction acts on a length scale � and the
continuous repulsion extends over a length scale �� � �.

At length scales of order �, the hard-sphere interaction
dominates and the system is structurally identical to a
hard-sphere fluid (or solid). To see this, consider the force
on a particle in a bulk phase, due to the long-range part of
the interaction. The force tends to 0 as � ! 1 for two
reasons: the pair energy of interaction is of order ���3 but
the pair force is a factor � smaller. Moreover, when add-
ing the pair forces due to O���3� different interactions,
the net force scales as ���3�1=2. Hence, in the limit
� ! 1, the force on the particles in a bulk phase due to
long-range interaction vanishes as ��5=2.

This implies that the fluid-to-crystal phase transition
for hard spheres plus an infinitely long-range interaction
(attractive or repulsive) starts off in exactly the same way
as it does for hard spheres [9]. Hard spheres crystallize
from the fluid via nucleation and growth [10,11]. As a
typical crystal nucleus of a hard-sphere fluid contains
only a few dozen to a few hundred particles [11], its
free energy and dynamics are unaffected by the long-
range interaction, as � is much larger than the size of the
nucleus.

The differences between hard spheres and systems with
long-range forces show up once nuclei have passed the
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nucleation barrier. In the absence of long-ranged forces,
crystal nuclei grow and coalesce to form a single bulk
crystalline phase, coexisting with a bulk fluid phase. The
driving force for domain growth is provided by the hard-
sphere fluid-crystal interfacial free energy, �hs [12].

However, when a > 0 we have seen that we do not have
bulk phase coexistence. Let us consider a system in the
fluid-crystal transition region, with domains of fluid and
crystal intermixed on a length scale l. Specifically, con-
sider the density to be a square-wave function of position
along one direction, with a period l, and so a wave vector
q � 2�=l. In the troughs the density is that in the fluid
phase, �F, and in the peaks, the density is that in the
crystal phase, �X. Thus the density modulation has a
magnitude ��X � �F�. The free-energy change of creating
the square-wave modulation costs an amount, per unit
volume, of order ��hsq, from the fluid-crystal interfaces.
But it also changes the energy due to the long-range
repulsion. Approximating this energy change by the
change due to the first Fourier mode at wave vector q,
and adding the interface term, we have

fl=kT � �hsq
 ��X � �F�
2 a

�1
 q2�2�2
: (4)

The fraction is half the Fourier transform of the long-
range part of the potential, Eq. (2). We neglected higher
Fourier modes, despite the fact that the fluid-crystal
interfaces are sharp on the length scale l. However,
more detailed calculations yield the same behavior as
Eq. (4) [14]. Anticipating that the length scale l  � we
drop the 1 in the denominator. The two contributions to
the surface free-energy density are comparable when

q�

 
��X � �F�

2a
�hs

!
1=5

��4=5: (5)

This happens when the domains have grown to a size l�
�4=5. For large �, this is much larger than the hard-sphere
diameter, yet smaller than � itself. For a long-range
attraction, a < 0, and both terms of the free energy,
Eq. (4), decrease as l increases. The minimum free energy
is achieved as l ! 1: two coexisting bulk phases.
However, for a long-range repulsion the two terms com-
pete: the hard-sphere term favors large domains, but the
long-range repulsion favors small domains. The equilib-
rium domain size is determined by this competition and
given by Eq. (5): the long-range repulsion breaks up the
coexisting bulk fluid and crystal phases of hard spheres
into domains whose size scales as �4=5. Lebowitz and
Penrose [4] appreciated that the bulk phases were broken
up into ‘‘droplets or froth’’ but did not estimate the
characteristic length scale. In the limit � ! 1, the size
of domains is much less than � itself and hence the long-
range repulsion sees a uniform density �, both inside and
outside the coexistence region of hard spheres. That is
195701-3
why its contribution to the free-energy density is simply a
times the square of the mean density �.

The effect of long-range repulsion is then similar to
that of surfactants: it breaks up bulk phase coexistence
into microphase coexistence. In fact, this analogy be-
comes even more clear if we consider the effect of a
long-range repulsion on the interfacial free energy. We
start with a planar interface between coexisting fluid and
crystalline phases of hard spheres, and add a long-range
repulsion. We estimate the change in interfacial free en-
ergy, �lr, as simply the energy change in creating the
interface due to the long-range repulsion, using the den-
sity profile of the interface in hard spheres. This density
profile changes over from �X to �F over a region with a
thickness of a few �, and so for large � we may approxi-
mate the density profile by a step function. It is then easy
to show that the change in interfacial free energy in a
hard-sphere system with a long-ranged interaction poten-
tial of the form given by Eq. (2) is

� � �hs �
3
2a��X � �F�

2�: (6)

The key point to note is that, at fixed a, the contribution
to the long-range contribution to the interfacial free
energy is negative and scales as �. When a reaches
��1��X � �F�

�2, the interfacial free energy becomes
zero and bulk coexistence is not stable. A long-range
repulsion destroys bulk coexistence at an integrated
strength a which varies as one over its range �.

However, for a repulsion with a finite range, the inter-
facial free energy is positive over a range of values of a.
Under those conditions, phase separation is still possible.
The reduction in interfacial free energy scales with the
square of the density gap, of order 10�2 here. This small
prefactor implies that a� must be larger than O�102� in
order to see microphase separation. For smaller values of
a�, bulk phase separation will remain, but the reduction
in interfacial free energy will affect crystal nucleation.
According to classical nucleation theory, the nucleation
rate depends exponentially on (minus) the cube of the
interfacial free energy [10]. As a consequence, it is
strongly affected even by small variations in the interfa-
cial free energy. In fact, experimentally it is well known
that colloids with a soft repulsive interaction crystallize
much more easily than hard-sphere colloids [15] and this
observation is supported by recent simulations of crystal
nucleation in suspensions of charged colloids [16]. We
stress that this effect shows up only when the range of
the repulsion is not much larger than the size of the
nucleus. In the limit � ! 1, the initial nucleation rate
is not affected by long-ranged repulsion.

The present paper focuses on the effect of long-ranged
repulsion on the freezing of three-dimensional systems.
However, the tendency of a long-range repulsion to turn
bulk phase coexistence into microphase separation is
general. For example, it also converts vapor-liquid
195701-3



P H Y S I C A L R E V I E W L E T T E R S week ending
16 MAY 2003VOLUME 90, NUMBER 19
coexistence into microphase separation [17], and there is
much work on the effect of r�3 repulsions in two dimen-
sions [18,19]. The effect of long-ranged repulsions on
nucleation rates has been studied in a somewhat different
context, namely, that of nucleation near a critical point
[20]. Long-range repulsive forces may also affect the
scenario for two-dimensional melting. This may be rele-
vant for the observation by Zahn et al. [21] of continuous
two-stage melting in a quasi-2D system of magnetic
colloids with a long-ranged r�3 repulsion. As an r�3

repulsion destroys macroscopic phase coexistence [19],
the presence of this interaction may allow the appearance
of a hexatic phase that would otherwise be preempted by a
first-order freezing transition.

In summary, we have calculated the (almost) exact
phase diagram of hard spheres with long-range attrac-
tions or repulsions, Fig. 1. For a long-range attraction the
bulk phase behavior is qualitatively what we expect for a
simple liquid such as argon, but the dynamics of the phase
transition are anomalous. At a sufficiently large range of
the attraction, the nucleation of the crystalline phase is
indistinguishable from that of hard spheres. A long-range
repulsion has a very different effect: it acts like a surfac-
tant, decreasing the interfacial free energy [see Eq. (6)],
eventually driving it to zero. Then, microphase separation
replaces bulk phase separation. This conclusion is based
on the analysis of Lebowitz and Penrose that becomes
exact in the � ! 1 limit. In our analysis of systems with
finite-ranged repulsions, we estimated how the repulsive
potential affects the interfacial free energy and the length
scale of microphase separation [Eq. (5)]. The transition
from bulk fluid to bulk crystal proceeds via microphase-
separated phases and is continuous in the limit � ! 1.
Surprisingly, although the transition is continuous, the
crystal phase has to form via nucleation.

Experimental realizations of systems with long-ranged
repulsion exist in two dimensions [18,19]. In three di-
mensions, it is possible to form Coulomb crystals of
unscreened ions in a trap [22], but we are not aware of
any detailed analysis of the liquid-solid transition in these
systems. In suspensions of charged colloids, the electro-
static repulsions are screened, if not by added salt then by
intervening macro ions themselves. Calculations of an
interface in a model of charged proteins show that the
electrostatic repulsion yields a negative contribution to
the interfacial free energy [23]; the effect, while strong
enough to enhance nucleation, does not lead to micro-
phase separation.
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